当前位置:首页 > 程序员推荐书籍入门 > 正文内容

求质数(Prime Number 素数)的方法——厄拉多塞筛法

2018-01-04 | 分类:程序员推荐书籍入门 | 评论:0人 | 浏览:98次

  质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。所以,质数是合数的基础,没有质数就没有合数。

【1】一般方法

  素数是除了1和它本身之外再不能被其他数整除的自然数。由于找不到一个通项公式来表示所有的素数,所以对于数学家来说,素数一直是一个未解之谜。像著名的 哥德巴赫猜想、孪生素数猜想,几百年来不知吸引了世界上多少优秀的数学家。尽管他们苦心钻研,呕心沥血,但至今仍然未见分晓。
自从有了计算机之后,人们借助于计算机的威力,已经找到了2216091以内的所有素数。
求素数的方法有很多种,最简单的方法是根据素数的定义来求。对于一个自然数N,用大于1小于N的各个自然数都去除一下N,如果都除不尽,则N为素数,否则N为合数。
但是,如果用素数定义的方法来编制计算机程序,它的效率一定是非常低的,其中有许多地方都值得改进。
第一,对于一个自然数N,只要能被一个非1非自身的数整除,它就肯定不是素数,所以不
必再用其他的数去除。
第二,对于N来说,只需用小于N的素数去除就可以了。例如,如果N能被15整除,实际
上就能被3和5整除,如果N不能被3和5整除,那么N也决不会被15整除。
第三,对于N来说,不必用从2到N一1的所有素数去除,只需用小于等于√N(根号N)的所有素数去除就可以了。这一点可以用反证法来证明:
如果N是合数,则一定存在大于1小于N的整数d1和d2,使得N=d1×d2。
如果d1和d2均大于√N,则有:N=d1×d2>√N×√N=N。
而这是不可能的,所以,d1和d2中必有一个小于或等于√N。
基于上述分析,设计算法如下:
(1)用2,3,5,7逐个试除N的方法求出100以内的所有素数。
(2)用100以内的所有素数逐个试除的方法求出10000以内的素数。
首先,将2,3,5,7分别存放在a[1]、a[2]、a[3]、a[4]中,以后每求出一个素数,只要不大于100,就依次存放在A数组中的一个单元 中。当我们求100—10000之间的素数时,可依次用a[1]-a[2]的素数去试除N,这个范围内的素数可以不保存,直接打印。

【2】我们这里主要是讲解厄拉多塞筛法

简单介绍一下厄拉多塞筛法。厄拉多塞是一位古希腊数学家,他在寻找素数时,采用了一种与众不同的方法:先将2-N的各数放入表中,然后在2的上面画一个圆圈,然后划去2的其他倍数;第一个既未画圈又没有被划去的数是3,将它画圈,再划去3的其他倍数;现在既未画圈又没有被划去的第一个数 是5,将它画圈,并划去5的其他倍数……依次类推,一直到所有小于或等于N的各数都画了圈或划去为止。这时,表中画了圈的以及未划去的那些数正好就是小于 N的素数。
这很像一面筛子,把满足条件的数留下来,把不满足条件的数筛掉。由于这种方法是厄拉多塞首先发明的,所以,后人就把这种方法称作厄拉多塞筛法。
在计算机中,筛法可以用给数组单元置零的方法来实现。具体来说就是:首先开一个数组:a[i],i=1,2,3,…,同时,令所有的数组元素都等于下标 值,即a[i]=i,当i不是素数时,令a[i]=0 。当输出结果时,只要判断a[i]是否等于零即可,如果a[i]=0,则令i=i+1,检查下一个a[i]。
筛法是计算机程序设计中常用的算法之一。

image

 

3.源码 :

package com.dk.mum;

import java.util.ArrayList;

/**
* Created by zzy on 04/01/2018.
*/
public class Solution {

    public int primeCount(int start, int end){
        return 1;
    }

    public int countPrimes(int n) {

        if (n <= 1) {
            return 0;
        }

        boolean[] notPrime = new boolean[n];

        notPrime[0] = true;
        notPrime[1] = true;

        for ( int i = 2; i * i < n; i++){
           if (!notPrime[i]){
               for (int j = 3; i * j < n; j ++){
                   notPrime [i *j] = true;
                   System.out.println("i="+ i +"j="+j);
               }
           }
        }

        // 统计
        int c = 0;
        for ( int i =2; i< n; i ++){
            if (notPrime[i] == false) ++c;
        }
        return c;
    }

    public static void main(String[] args) {

        Solution s = new Solution();
        System.out.println(s.countPrimes(19));
    }

}

来源:找知博客(微信号/QQ号:2580305319),转载请注明出处,谢谢!

  • 评论:(0)

已有 0 位网友发表了一针见血的评论,你还等什么?

◎欢迎参与讨论!

站内搜索